
6/16/2008

Demystifying the DB2 Dynamic Statement Cache

For the Atlanta DB2 Users Group – March 2008

What Will We Talk About?

› Some SQL Tuning Fundamentals

› Dynamic SQL in More Detail

› Introduction to DB2 Statement Caching

› Mining for Gold in the Global Statement Cache

DB2 Tuning - Where Should You Spend Your Time

› What Can I tune in DB2

› Where are the biggest problems
– Purely an estimate and your experience may vary
– Many tuning efforts combine multiple areas

• Especially true of SQL and Object Analysis

SQL
70%

Object
Analysis

20%

Subsystem
10%

› Focus on individual SQL statements
– Do they meet “best practice” coding

standards
– Do they use expected/accepted DB2

access paths
– Do they deliver desired result set in

acceptable time with acceptable
resource consumption

› Developed and tested in controlled
environment

› More predictive in nature

› Focus on workload dynamics
– How does concurrent execution affect

response time/resource consumption
– Does this SQL statement/program

collide with other transactions
– Same application

• Other applications in a shared
subsystem

› Real world unpredictability comes into
play

› More focus on measuring the workload
and rapidly reacting

Solving the Problem
SQL Analysis Across the Application Life Cycle

SQL Tuning Fundamentals
DB2 Optimizer Determines SQL Performance

SQL Statement
Text

DB2
Configuration

Tablespace
DB04.TS1

Index
App1.Index1

Catalog
Statistics

TABLE

Hardware
Configuration

Schema Definitions

Access Path
To the Data

SQL Tuning Fundamentals
Access Path Selection

Static SQL
› Access path determined at bind time – better

performance
– Exceptions to the rule

• REOPT (VARS) or (ALWAYS)
– Access path determined at run time for those statements

with host variables or parameter markers
• PREPARE(DEFER)

– Option useful in distributed environments for reducing
message traffic

› Authorization for execution at the plan/package level
› Qualifiers passed via host variables
› SQLJ provides for bound static SQL in Java applications

For Dynamic SQL
› Access Path Selection determined at execution

– That’s the PREPARE
– Exceptions to the Rule

• KEEPDYNAMIC bind option
– Holds prepared statements across commits to avoid cost of

re-preparing statement
• Global Dynamic Statement Cache

– Maintains Skeleton of prepared statements
› Build and execute SQL on the fly
› User requires authorization to all accessed objects
› Parameter markers for passing variables

SQL Statement
TextDB2

Configuration

Tablespace
DB04.TS1

Index
App1.Index1Catalog

Statistics

TABLE

Hardware
Configuration

Schema Definitions

Access Path
To the Data

Trends in the Marketplace
Static vs. Dynamic SQL

› Dynamic SQL usage is on the increase

› What’s driving it?
– Dynamic SQL offers flexibility that can simplify developing complex applications
– New applications being developed on distributed platforms using connections that

only support dynamic SQL
• DB2 CONNECT, etc.

– ERP applications implemented with dynamic SQL
• SAP, PeopleSoft, Siebel

– New applications being developed on distributed platforms
• New developers are much more familiar with GUI-based programming environments and

don’t even sign on to the mainframe
–More Java and C++

SQL Fundamentals - Static SQL

› Data access requirements well defined and predictable
› Static SQL cursor constructs

– Open the cursor

– Fetch the rows from the result set

– Close the cursor

Host variable defined
In working storage

– Define the Cursor

SQL Fundamentals - Dynamic SQL

› Data access requirements are ad hoc in nature
and identified on the fly

– SELECT Operations
Parameter marker
provides placeholder
for later substitution

› Other operations

– Cause the INSERT statement to be prepared and executed
immediately

Notice the literal

SQL Fundamentals - Dynamic SQL In Practice

› A Statement from a major ERP
application

› Built on the fly based on search
criteria selected

› A complex statement with
unpredictable input

– Default statement syntax includes minimal
number of search criteria

– More search criteria the statement
expands to include those search
arguments

– If using static SQL could require over 100
cursor definitions in the program

Dynamic SQL Operational Considerations

› Sensitive to DB2 statistics
– Dynamic SQL always uses current catalog statistics for access path selection

• Changes in DB2 statistics can cause unpredictable changes in access paths
– Some DB2 customers collect catalog statistics to drive maintenance processes

• May cause SQL performance to fluctuate unexpectedly
› Security is generally more complex with dynamic SQL

– Application users generally require authorization to the objects being accessed
– Auditing is also affected because statements are developed on the fly

› Governor capability may be required
– Performance characteristics can vary widely for dynamic
– DB2 Resource Limit Facility may be required

› Access path analysis difficult because access path is not available prior to
execution

Dynamic SQL Considerations
PREPARE Yourself

› Repeated PREPAREs drive up the cost of dynamic SQL
– Prepared statements by default are not persistent across UOWs
– Prepare costs vary widely but are significant

› Key requirement from anyone developing dynamic SQL applications to
reduce or eliminate the cost of preparing dynamic SQL statements

– Driven initially by SAP and other ERP vendors
– More in-house dynamic SQL applications drive this requirement

› Enter Dynamic Statement Caching

Introduction to Dynamic Statement Caching

› Goal is to reduce or eliminate SQL Prepare operations required for dynamic SQL
statements

› Implementation
– Four kinds of caching

• No caching
• Local Dynamic Statement Caching
• Global Dynamic Statement Caching
• Full Caching

– Cache prepared SQL statement and statement text for dynamic SQL statements in
DBM1address space

• Local Statement Cache
• Global Dynamic Statement Cache

– Controlled by various parameters
• Bind options
• DSNZPARMs
• Application constructs

Dynamic Statement Caching
No Statement Caching

› Prepared statements do not persist across commits
– Discarded at commit
– Except for statements defined with CURSOR for HOLD

› Default mode of operation
Program RRS01 Thread Storage

Prepared Statement
STMT2(Version 1)

Full
Prepare

Used

Disc
arde

d

Used

Prepared Statement
STMT2(Version 2)

Full
Prepare

•No prepare returns -514 or -518

Dynamic Statement Caching
With Local Statement Caching Only

› Eliminates need for application to do multiple prepares for same statement
– Implicit prepares done by DB2

› Enabling Local Statement Caching
– KEEPDYNAMIC(YES) Bind Parameter
– MAXKEEPD DSNZPARM controls maximum prepared statements

• Does not affect statement text which is always kept
› Differentiation between prepared statement and statement text
› Minimal benefit if used alone

– Some reduction in message traffic in a distributed environment is possible

Program RRS01 Thread Storage

Dis
car

ded

Statement Text
Retained

Implicit

Prepare
Prepared Statement
STMT2(Version 2)

Used

Full
Prepare Prepared Statement

STMT2(Version 1)

Program RRS01

RRS01 Local
Thread Storage

Dynamic Statement Caching
Global Statement Caching Only
› Allows reuse of prepared statements across UOWs

– Within and across program executions
– Prepared statement (SKDS) cached in global dynamic statement cache

• Copied into local storage when possible
•• Short PrepareShort Prepare

› Enabling global statement caching
– CACHEDYN=YES DSNZPARM value
– Storage allocation discussed later

› Big benefit for applications with frequent reuse of dynamic SQL
– Benefits with no coding changes required

Program RRS01
RRS01 Local

Thread Storage

Global Statement Cache
SKDS

SKDS

Prepared Statement
STMT2(Version 1)

Full
Prepare

SKDS

Prepared Statement
STMT2(Version 1)

Short
Prepare

Dynamic Statement Caching
Where Cached Statements can be Reused

› Statement text must be 100% the same
–Use parameter markers
–Literals won’t work (usually)

› Additional items must be 100% the same
or compatible

– Bind rules
–Special registers
–Authorizations
–Others

› You may not get any benefit out of the
dynamic statement cache at all

–Most likely to benefit if you using an ERP
or some other application that uses
dynamic SQL extensively

Dynamic Statement Caching
Full Caching – A Final Flavor

› Combines benefits of local and global statement caching
– Ability to completely avoid prepare operations
– Prepared statement kept in local thread storage and not invalidated across commits

•• Prepare AvoidancePrepare Avoidance
› Enabling global statement caching

– CACHEDYN=YES, MAXKEEPD>0, KEEPDYNAMIC(YES)
› Maximum benefit within an application execution

– Local thread storage is discarded at thread termination

Program RRS01

RRS01 Local
Thread Storage
Prepared Statement
STMT2(Version 1)

Full
Prepare

Pre
par

e

Avo
ide

d

Dynamic Statement Caching
Cost Impacts

› Full Prepare
– Statement not in cache
– Global statement caching not active

› Short Prepare
– Dynamic statement (SKDS) in the

global cache
– Global caching active

› Avoided Prepare
– Local and global caching active

DB2 Execution Metrics

Dynamic Statement Caching
Impacts on Storage

EDM Pool in DB2 V7

›Caches access path & internal
structure definitions
›This pool contains

–DBDs – database descriptors
–Skeleton Package and Cursor Tables

(SKPT & SKCT)
–Package and Cursor Tables – (PT/CT)
–Authorization cache block for each

plan (optional)
–SKDS - Skeletons of dynamic SQL for

CACHE DYNAMIC SQL (optional)
Optionally stored in a dataspace

–Trigger Packages

DBD DBD SKPT

SKCT SKCT

SKPT

CT

CT

CT

CT

CTPT CT

SKDS SKDS SKDS

DB2 Database Services
DBM1

Dynamic Statement Caching
Impacts on Storage

EDM Pool In DB2 V8

›EDMPOOL now in 3 separate pools
– EDMDBDC – DBDs

• Above the Bar
– EDMSTMTC – Dynamic Statements

• Above the Bar
– EDMPOOL – Skeleton Package and

Cursor Tables
• Still below the bar and a potential

source of VSC
›No dataspace option for Dynamic
Statement Cache

DBM1 - DB2 Database Services

2GB Bar

DBDs

DBDPOOL

DBDs

GLOBAL STATEMENT CACHE

SKDS SKDS SKDS

EDMPOOL
SKCT

SKPT CT

PT

Dynamic Statement Caching
Impacts on Storage

EDM Pool In DB2 V9

›Portions of runtime Components
moved above the bar

–Plan and package skeletons above
the bar

– Bound/Prepared DML Statements
• Statement Text
• SQLDA DESCRIBE output
• Portion of native SQL PL package

– Portions of static SQL sections
(CT/PT) are moved as well

›Further reduces VSC in the DBM1
address space

DBM1 - DB2 Database Services

2GB Bar

DBDs

DBDPOOL

DBDs

GLOBAL STATEMENT CACHE

SKDS SKDS SKDS

EDMPOOL CT PT

EDMPOOL

SKPTSKCT

CT PT

Dynamic SQL Statement Caching
DB2 Cache Statistics

Global Cache Hit Ratio
Shoot for 80+%

Statement Pool Full
Failures

Should be 0
Increase Statement Pool

Size if not

Statement Discarded
Shoot for 0

Increase MAXKEEPD

Local Cache Hit Ratio
Specific for Applications

bound with
KEEPDYNAMIC(YES)

The Global Dynamic Statement Cache
What Goes In?

› Dynamic Statements
– If the Global Cache is active (CACHEDYN=YES) and not a REOPT(ALWAYS) application
– Reside in the till they are thrown out

• DROP or ALTER
• Authorization Revoked
• LRU
• RUNSTATS
• DB2 is recycled

Retrieving Data From the Global Cache

› As shown previously
– Statement caching performance data in DB2 statistics records
– Metrics show details about cache hit ratios and other useful data points that help you

evaluate overall performance of your statement caches
› For more detail on Global Statement Cache usage the following instrumentation is

provided
– IFCID 316 – Provides details on statements in the cache

• First 60 bytes of SQL text
• Includes execution statistics (0 if not being collected)

– IFCID 317 can then be used to retrieve the entire SQL statement from the cache once
you have identified the statement of interest

› EXPLAIN STMTCACHE
– V8 feature that exports Dynamic Statement Cache information to the

DSN_STATEMENT_CACHE_TABLE
– Nearly identical to the detail in IFCID 316 & 317
– Multiple options including ALL, stmt-id, and stmt-token

Reviewing Global Statement Cache Information
IFCID 316 Results

•First 60 Bytes of SQL Text
IFCID 317 gives full text

•Bind Options
•Statement Statistics (more later)

Mining the Dynamic Statement Cache
EXPLAIN STMTCACHE ALL

› Extracts all statements from the global cache
› Inserts one row for each entry in the global DSC

– Populates DSN_STATEMNT_CACHE_TABLE only
– STMT_ID column matches the Unique ID in the global statement cache
– Nearly exact match to the DSC with a few additional columns
– STMT_TEXT is a 2M CLOB so be careful with that
– COLLID set to DSNDYNAMICSQLCACHE

....

....

DSN_STATEMENT_CACHE_TABLE

Mining the Dynamic Statement Cache
EXPLAIN STMTCACHE STMT_ID

› Extracts a single statement from the global DSC
– Populates PLAN, DSN_DYNAMIC_STATEMNT, DSN_STATEMENT, and

DSN_FUNCTION tables if they exist
– Access path is current access path for statement in the cache
– Numeric literal or host variable from program
– -248 SQL Return Code back to program is STMT_ID not found

....
PLAN TABLE

....
DSN_STATEMENT_CACHE_TABLE

DSN_STATEMENT_TABLE

Mining the Dynamic Statement Cache
EXPLAIN STMTCACHE STMTTOKEN

› Extracts a group of statements from the global DSC
– Populates PLAN, DSN_DYNAMIC_STATEMNT, DSN_STATEMENT, and

DSN_FUNCTION tables if they exist
– Access path is current access path for statement in the cache
– Based on STMT_TOKEN value in the cache
– Alphanumeric literal or host variable in program
– -248 SQL Return Code returned if no qualifying entries found in cache

....

DSN_STATEMENT_CACHE_TABLE

Mining the Dynamic Statement Cache
More on the STMT_TOKEN in the Cache

› Provides a method for grouping similar SQL statements
› STMTTOKEN values set using RRSAF or sqleseti functions
› Similar to Client special registers implemented in DB2 v8
› PL/1 RRSAF Example

• Set STMTTOKEN Value
• Call to DSNRLI (RRSAF)

with SET_ID function
• Error handling follows

• Set Client Special
Registers

• Call to DSNRLI (RRSAF)
with SET_CLIENT_ID
function

• Error handling follows

Reviewing Global Statement Cache Information
IFCID 318

› Execution statistics for dynamic
SQL statements

› Turn on collection with Monitor
trace IFCID 318

– Begins collecting statistics and
accumulates them for the length
of time the monitor trace is on

– Stop Monitor trace resets all
statistics

– 2-4% overhead per dynamic SQL
statement stored in the cache

› Recommended approach
– Run the trace only when actively

monitoring the cache
› Use EXPLAIN STMTCACHE to

externalize data for evaluation

Acknowledgements

› There are numerous documents that discuss SQL in general and
dynamic SQL in particular, including:

– DB2 technical publications
– Technical articles by numerous DB2 Subject Matter Experts
– IDUG List Server Archives

› IBM Redbooks on this topic were especially helpful in researching
this presentation, including:

– DB2 for z/OS and OS/390 : Squeezing the Most Out of Dynamic SQL
– DB2 UDB for z/OS V8: Through the Looking Glass and What SAP Found

There

Summary

› Dynamic SQL is growing in usage
– ERP Vendors
– Distributed applications

› DB2 offers multiple options for reducing the overhead traditionally
associated with dynamic SQL

› These options include multiple types of statement caching
– Local statement caching
– Global statement caching
– Full statement caching

› DB2 9 will see big changes in the way the SQL statement execution
statistics discussed in this session will be used captured and used

